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bstract

The photoinduced dynamics of pyrrole at the 1A2(��∗)– S0 and 1B1(��∗)– S0 conical intersections has been investigated by multi-mode
ime-dependent quantum wave-packet calculations. Diabatic potential-energy surfaces have been constructed for both conical intersection using
ccurate multi-reference ab initio electronic-structure calculations. In addition to the NH stretching coordinate, the three (four) symmetry-allowed
oupling modes of A2 (B1) symmetry have been considered for the 1A2(��∗)– S0 (B1(��∗)– S0) conical intersections. Wave-packet dynamics
alculations have been performed for three-dimensional models, taking account of the two dominant coupling modes of each conical intersection.
he electronic population-transfer processes at the conical intersections, the branching ratio for the dissociation to the ground and excited states
f the pyrrolyl radical, and their dependence on the initial preparation of the system have been investigated. It is shown that the excitation of
he NH stretching mode strongly enhances the photodissociation rate, while the excitation of the strongest coupling mode has a pronounced
ffect on the branching ratio of the photodissociation process. Although the inclusion of the second (weaker) coupling mode has little effect

n the electronic population dynamics, it leads to interesting changes of the nodal pattern of the wave packet at the conical intersections.
he calculations provide insight into the effect of the multiple coupling modes on the process of direct photodissociation through a conical

ntersection.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Ab initio calculations have revealed that the near-UV pho-
olysis of pyrrole essentially involves the four lowest excited
inglet states, which are 1A2(��∗), 1B1(��∗), 1B2(��∗), and
A1(��∗) [1–5] (see Fig. 1). The ordering of the vertical exci-
ation energies of these four states has been quite controversial
1–3]. The two 1��∗ states are responsible for the broad and
ntense absorption band near 6 eV. The two lowest excited sin-
let states are of 1��∗character. At the ground-state equilibrium

eometry, the �∗ orbital is essentially a 3s Rydberg orbital. Upon
tretching of the NH bond, the potential-energy (PE) functions
f the 1��∗ states are repulsive. They intersect the PE function

∗ Corresponding authors. Tel.: +49 89 28913609.
E-mail addresses: lan@ch.tum.de (Z. Lan), domcke@ch.tum.de

W. Domcke).

s
c
c
r
t
t
(
p

010-6030/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.jphotochem.2007.01.018
cal intersections; Wavepacket

f the electronic ground state, resulting in the 1A2(��∗)– S0
nd 1B1(��∗)– S0 conical intersections [4] (see Fig. 1). These
onical intersections provide a mechanism for ultrafast internal
onversion (that is, radiationless decay to the electronic ground
tate), as well as hydrogen abstraction [4]. The latter process has
een confirmed by the experimental detection of fast hydrogen
toms in the photodissociation of pyrrole [6–9].

The nonadiabatic photoinduced dynamics of pyrrole has been
nvestigated via time-dependent quantum wave-packet calcula-
ions on two-dimensional ab initio PE surfaces [10,11]. The NH
tretching mode has been considered as well as the dominant
oupling mode at the 1A2(��∗)– S0 and 1B1(��∗)– S0 coni-
al intersections, respectively [11]. The model calculations in
educed dimensionality have revealed two key features: (1) the

ime scale of the hydrogen abstraction is extremely sensitive
o the initial vibrational level of the NH stretching mode, and
2) the branching ratio for photodissociation into the 2� and 2�
yrrolyl radicals depends on the initial excitation of the cou-
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ig. 1. Potential energy of the five lowest singlet electronic states, S0, ��∗
1A2), ��∗ (1B1), ��∗ (1B2) and ��∗ (1A1) of pyrrole as functions of rNH.

ling mode [11]. The conical intersections between the 1��∗
nd 1��∗ states have been characterized in Ref. [12].

Very recently, Ashfold and co-workers have applied high-
esolution photofragment translational spectroscopy at several
xcitation wave lengths to pyrrole and several other heteroaro-
atic molecules [13–16]. These experiments have revealed that

he pyrrolyl radical (as well as the corresponding radicals of
ther heteroaromatics) is formed in remarkably limited subsets
f its available state density. Such mode-specific product for-
ation after photoexcitation of medium-size organic molecules
ould have been considered, until recently, very unusual. Such
ibrational mode-specific photodissociation dynamics is now
ecognized as a signature of ultrafast nonadiabatic dynamics via
onical intersections [16].

In the present work, we have extended the previous calcula-
ions [10,11] by investigating the effect of all symmetry-allowed
oupling modes [17] for each 1��∗– S0 conical intersection
n pyrrole. We treat the two 1��∗– S0 conical intersections
eparately. We construct models of reduced dimensionality to
xplore the quantum nonadiabatic dynamics at the individual
onical intersections. Multi-reference electronic-structure meth-
ds have been employed to characterize the coupling modes.
ew-dimensional PE surfaces have been constructed on the
asis of these ab initio data, following the strategy of previous
orks [10,11]. The essential features of the ultrafast hydrogen-

bstraction dynamics of photoexcited pyrrole are explored,
mploying standard quantum wave-packet (WP) propagation
ethods.

. Theory

.1. Ab initio calculation of the adiabatic PE surfaces

In our calculations, we have used the augmented correlation-
onsistent polarised-valence-double-zeta (aug-cc-pVDZ) basis

et [18]. To properly describe the Rydberg character of the 1��∗
tates in the Frank-Condon (FC) region, one additional diffuse
function and one additional set of p functions were added

t the nitrogen atom, as well as two additional diffuse s and

s
t
v
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wo additional sets of diffuse p functions at the active hydrogen
tom. Their exponents were derived by dividing successively
he exponent of the most diffuse s and p functions in the aug-cc-
VDZ basis by factor of 3.0.

The ground-state equilibrium geometry, the normal modes
nd the harmonic vibrational frequencies of pyrrole have been
btained with the second-order Møller-Plesset (MP2) method
sing the GAUSSIAN 98 package [19].

To characterise the 1A2– S0 and 1B1– S0 conical inter-
ections, we have performed two independent ab initio
omplete-active-space self-consistent-field (CASSCF) calcula-
ions by averaging the CASSCF functional over the 1A2 and S0,
nd the 1B1 and S0 states, respectively. These calculations were
erformed with the MOLPRO package [20].

For the calculation of the 1A2– S0 conical intersection, the
ctive space consists of three � orbitals and two �∗ orbitals, as
ell as one occupied � orbital and the corresponding �∗ orbital
f Rydberg character. This active space corresponds to a dis-
ribution of 8 electrons in 7 orbitals. For the calculation of the
B1– S0 conical intersection, besides the orbitals included in
he 1A2– S0 calculation, it was found to be necessary to include
wo additional occupied orbitals of � character (8a1, 6b2), and
hree additional virtual orbitals of �∗ character (11a1 − 12a1,
b2) to obtain smooth PE surfaces in the region of the bar-
ier of the 1B1 (��∗) surface, where the 1��∗ state changes its
haracter from 3s towards H1s. Thus, the active space is com-
osed of 12 electrons in 12 orbitals. As pointed out in a recent
tudy by Celani and Werner [5], this active space yields the cor-
ect ordering of the low-lying valence and Rydberg states of
nterest.

.2. Analytic representation of the diabatic PE surfaces

The ab initio calculations yield the adiabatic PE surfaces.
he adiabatic representation is not convenient for the treatment
f the reaction dynamics due to the singularity of derivative
ouplings at the conical intersection [21]. Thus, we introduce a
o-called quasi-diabatic electronic representation via a suitable
nitary transformation of the electronic states [21–23].

The diabatic-to-adiabatic transformation matrix U of the elec-
ronic wavefunctions is generally defined as

a = U�d, (1)

here �a and �d are two-dimensional vectors of adiabatic and
iabatic electronic wave functions, respectively. The adiabatic
E matrix Va is obtained from the diabatic PE matrix Vd via

a = UVdU+. (2)

he diagonal elements of the matrix Vd are the diabatic PEs
orrelating with the S0 and one of the two 1��∗ states, respec-
ively. The off-diagonal element of Vd represents the electronic
ouplings between different diabatic states.
In the present rather transparent case of a single conical inter-
ection, arising from the symmetry-allowed crossing of one of
he 1��∗ states and the S0 state, we can achieve the diabatization
ia the ansatz of a 2 × 2 diabatic PE matrix as an analytic func-
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ion of the nuclear coordinates. The parameters of the ansatz
re determined by a least-squares fit of the eigenvalues of the
E matrix to the ab initio PE data. The details of the diabatic
odels can be found in Appendix A.

.3. Multi-mode Hamiltonian

The Hamiltonian for nuclear motion is expressed in the two-
tate diabatic basis as

= TN

(
1 0

0 1

)
+
(

V11 V12

V21 V22

)
. (3)

here TN is the nuclear kinetic-energy operator. V11 and V22
escribe the PE surfaces of the ground diabatic S0 state and the
iabatic 1��∗ state, respectively.

The selection of the relevant modes of the reduced dimen-
ionality models can be performed with the help of symmetry
election rules. Since pyrrole possesses C2v symmetry, its 24
nternal degrees of freedom correspond to nine A1, three A2,
ight B1 and four B2 vibrational modes:

= 9�A1 + 3ΓA2 + 8ΓB1 + 4ΓB2 . (4)

The NH stretching coordinate rNH of A1 symmetry is the
eaction coordinate for the hydrogen abstraction reaction. For
he 1A2– S0 conical intersection, the coupling coordinates [17]
re the three normal coordinates of A2 symmetry. For the 1B1–
0 conical intersection, the coupling coordinates are the four
ormal coordinates of B1 symmetry. These selection rules result
n models which include four or five degrees of freedom for the
A2– S0 or 1B1– S0 conical intersections, respectively.

In this set of coordinates, the kinetic-energy operator takes
he following form:

N = − h̄2

2μ

∂2

∂r2 −
∑

c

1

2
ωc

∂2

∂Q2
c

, (5)

here μ is the reduced mass corresponding to the motion of the
atom relative to the ring part of pyrrole. r is defined as the dis-

ance between the H atom and the center of mass of the ring. Qc

re dimensionless normal coordinates with corresponding fre-
uencies ωc. Here the summation is over all symmetry-allowed
oupling modes.

In the present rather simplified model, all other internal coor-
inates are kept frozen at their ground-state equilibrium values.
his means that we ignore the energy transfer between the
ctive modes and the many other vibrational modes. It should
e mentioned that we also ignore here the possible coupling
etween the 1B1(��∗) and 1A2(��∗) states via in-plane vibra-
ional modes of B2 symmetry [24,25]. Moreover, we do not

onsider the vibronic interaction of the 1��∗ states with the
ptically allowed 1��∗ states via out-of-plane modes [12]. The
xperimental results of Ashfold’s group have revealed that these
ibronic inducing modes are spectator modes, that is, their quan-
um states do not change during the photodissociation process
14,16].

P

P

F
c
b
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.4. Effective-mode Hamiltonian

The concept of effective tuning and coupling modes has been
iscussed in previous works (see Refs. [17,26–28] and the ref-
rences therein). It has been shown that the effective mode is a
ood approximation when the tuning (coupling) modes possess
imilar frequencies [17,26,27].

In the case of a conical intersection with several coupling
odes with frequencies ωc and coupling strength λc, a single
ode, the so-called effective coupling mode, can be constructed

o represent the effects of all coupling modes. The coupling
trength λeff and the frequency Ωeff of this effective coupling
ode are [17,26,27]

eff =
√∑

c

λ2
c, (6)

eff =
∑

c

λc

λeff
ωc, (7)

eff =
∑

c

λc

λeff
Qc. (8)

his approximation reduces the dimensions of our models from
our (1A2– S0 intersection) or five (1B1– S0 intersection) to two:
he NH stretching mode and the effective coupling mode.

.5. Preparation of the initial states, WP propagation and
opulation probabilities

The vibrational eigenstates of the adiabatic ground-state PE
urface are constructed within the time-independent framework,
y the diagonalization of the adiabatic ground-state Hamiltonian
n a finite-basis representation. The initial WPs are prepared by
ertical electronic excitation, that is, by placing a given vibra-
ional state of the electronic ground state into one of the 1��∗
xcited states. The photoinduced dynamics of pyrrole is treated
n the time-dependent picture by solving the time-dependent
chrödinger equation for the nuclear motion on the coupled
urfaces in the diabatic representation. For the large-amplitude
H stretching coordinate, we adopt the representation of the
P on an equidistant grid. For the coupling modes, it is more

conomical to employ an expansion of the WP in harmonic-
scillator basis functions. The details of this mixed-grid-basis
epresentation (MGBR) are explained in Appendix B.

Adiabatic and diabatic electronic population probabilities
re defined as expectation values of the corresponding projec-
ion operators, |φa〉〈φa| or |φd〉〈φd|, with the time-dependent
ibronic wave function [17]

d d d

i (t) = 〈	(t)|φi 〉〈φi |	(t)〉, i = 1, 0, (9)

a
i (t) = 〈	(t)|φa

i 〉〈φa
i |	(t)〉, i = 1, 0. (10)

or the present dissociative system, we use a special trick to
alculate the diabatic and adiabatic populations. The details can
e found in Appendix C.
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Table 1
Harmonic vibrational frequencies of the ground state of pyrrole obtained with
the MP2 methods

Mode Symmetry ω (cm−1)

MP2 DFT

�1 A1 3672.8 3674.7
�2 A1 3304.8 3262.2
�3 A1 3283.2 3240.0
�4 A1 1494.7 1500.5
�5 A1 1430.7 1417.1
�6 A1 1167.5 1173.8
�7 A1 1096.0 1092.2
�8 A1 1035.9 1033.8
�9 A1 882.0 901.9

�10 A2 824.3 878.2
�11 A2 664.9 686.9
�12 A2 608.8 631.0

�13 B2 3298.5 3256.3
�14 B2 3271.9 3228.7
�15 B2 1544.9 1576.5
�16 B2 1480.7 1455.8
�17 B2 1291.3 1309.0
�18 B2 1156.7 1159.0
�19 B2 1056.0 1066.6
�20 B2 858.9 881.3

�21 B1 792.6 830.9
�22 B1 716.2 727.8
�23 B1 637.1 641.0
�24 B1 515.9 474.9
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he frequencies obtained with the DFT method and the B3LYP functional (Ref.
13]) are given for comparison.

. Results and discussion

.1. Ab initio results

The calculated equilibrium geometry of the ground state
f pyrrole is in good agreement with previous results
1–3,5,29–31]. The normal modes, their symmetry labels and
he harmonic vibrational frequencies are given in Table 1 for
he convenience of the reader. The vibrational frequencies are in
ood agreement with previous theoretical data (see Ref. [13] and
eferences therein). The atomic displacement vectors associated
ith the normal modes of A2 and B1 symmetry are shown in
ig. 2.

1
For the A2– S0 conical intersection, the vibronic coupling
onstants λc of the three A2 modes at the conical intersection
re given in Table 2. The mode �11 is found to be the strongest
oupling mode with a dimensionless coupling parameter λ/ω =

able 2
armonic vibrational frequencies ω, 1A2– S0 coupling parameter λ and dimen-

ionless coupling parameter λ/ω of three A2 modes at the 1A2– S0 conical
ntersection

ode ω (eV) λ (eV) λ/ω

10 0.102 0.043 0.422

11 0.083 0.111 1.337

12 0.075 0.035 0.467

1
m
0

o
i
w
p
p
m
c
H
o

ig. 2. Nuclear displacement vectors of the A2 and B1 normal modes of pyrrole.

.34. The other two modes, �10 and �12, are rather weak coupling
odes, with dimensionless coupling parameters in the range
.42 − 0.46, three times smaller than that of mode �11.

For the 1B1– S0 conical intersection, the coupling constants
f the four B1 modes at the conical intersection are given
n Table 3. Among them, the strongest coupling mode is �24
ith the dimensionless coupling parameter 5.53. This mode
ossesses the lowest frequency and mainly represents the out-of-
lane motion of the H atom of the azine group (see Fig. 2). The

ode �22 is also a relevant coupling mode, with λ/ω ∼ 0.8. It

orresponds to a combination of the out-of-plane motion of the
atom of the azine group and similar motions of the H atoms

f the ring (see Fig. 2). The modes �21 and �23, representing the
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Table 3
Harmonic vibrational frequencies ω, 1B1– S0 coupling parameter λ and dimen-
sionless coupling parameter λ/ω of the four B2 modes at the 1B1– S0 conical
intersection

Mode ω (eV) λ (eV) λ/ω

�21 0.098 0.0 0.0
�22 0.089 0.072 0.809
�
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23 0.079 0.0 0.0

24 0.064 0.354 5.531

ut-of-plane motions of the N atom or H atoms of the ring, are
ssentially inactive (see Table 3).

.2. 1A2– S0 conical intersection

The coupling strength of �11 is much stronger than that of the
ther two modes of A2 symmetry. In the previous work, we have
aken just this coordinate into account as the coupling coordinate
o construct a two-dimensional (2D) model [11]. The coupling
odes �10 and �12 have similar coupling strengths at the conical

ntersection and their coupling strengths are much weaker than
hat of �11. To investigate their effect on the dynamics of the
A2– S0 conical intersection, we can add either of them to the
D model to obtain a three-dimensional (3D) model. We have
erformed WP calculations by adding either the mode �10 or
12. The results show that the influence of �12 on the dynamics
s more prominent than that of �10. Therefore, we discuss only
he results of the 3D model which includes the strong coupling

ode �11 and the weak coupling mode �12.

.2.1. Vibrational eigenstates of the electronic ground-state
urface

The lowest vibrational levels of the 3D electronic ground-
tate surface of the 1A2– S0 conical intersection model have
een calculated by diagonalization of the ground state Hamilto-
ian. We designate the occupation numbers of the NH stretching
ode, the strong coupling mode (�11) and the weak coupling
ode (�12) as nr, nc,1 and nc,2, respectively. The fundamen-

al frequencies of these three vibrations are 3405, 675 and
13 cm−1, respectively, in the 3D model, in acceptable agree-
ent with the experimental and full-dimensional harmonic

requencies (see [31,32] and references therein).

.2.2. Electronic population and WP dynamics
As discussed previously for the 2D model of the 1A2– S0 coni-

al intersection, the photodissociation rates are highly dependent
n the preparation of the initial state of the NH stretching mode.
hen the NH stretching mode is prepared in its ground state

(0, nc,1, nc,2) initial condition], no fast dynamics takes place
ue to the presence of a rather high barrier in the 1A2 (��∗)
tate (0.40 eV). The energies of the initial states are significantly
ower than this barrier. The WP is therefore trapped in the well of

he 1A2 state. It can escape only by quantum tunnelling, which
appens on a rather long time-scale. In addition, the top of the
arrier on the 1A2 (��∗) surface is lower in energy than the
pper adiabatic dissociation limit (2�). The upper dissociation

d
o
s
f

obiology A: Chemistry 190 (2007) 177–189 181

hannel is therefore closed and the WP dissociates towards the
ower limit (2�).

If we put one quantum of energy into the NH stretching
otion [(1, nc,1, nc,2) initial condition], the adiabatic popula-

ion probabilities exhibit extensive population transfer within
0 fs (see Fig. 3). In this case, the WP can overcome the barrier
n the 1A2 state and reach the conical intersection very quickly
ue to the strongly repulsive character of the 1A2 surface. At
he conical intersection, the WP splits and moves towards both
issociation channels, 2� and 2�. Since the top of the barrier in
he 1A2 state is slightly lower than the upper (2�) dissociation
imit, only the high-energy part of the WP can dissociate towards
he upper dissociation limit directly. The low-energy part of the

P (with an energy between the barrier of the 1A2 state and the
pper dissociation limit), is reflected by the attractive upper adia-
atic potential and re-enters the conical intersection. This part of
he WP oscillates at the conical intersection, and finally dissoci-
tes to the ground state of the pyrrolyl radical. This explains
he decay of the diabatic population of the 1A2 state in the
arly stage of the reaction and the recovery of it in the later
tage. When two quanta of the NH stretching mode are initially
xcited [(2, nc,1, nc,2) initial condition], we also observe very
ast decays of the Pa

1 populations (not shown here). However, the
nhancement of the decay time relative to nr = 1 is not signif-
cant. The recovery of the diabatic population Pd

2 disappears in
his case.

For the above cases, all of the wave packet moves to the
wo dissociation channels and the the total photodissociation
robability is unity in the present treatment. It is interesting to
otice that the branching ratio of the reaction is sensitive to the
reparation of the dominant coupling mode �11. The diabatic
opulation transfer at the conical intersection is enhanced by
he excitation of this mode (see Fig. 3). On the other hand, the
xcitation of the weak coupling mode �12 has almost no effect on
he population dynamics (see Fig. 3). This result shows that the
onadiabatic transition at the conical intersection is primarily
riven by the mode �11.

It is worthwhile to compare these results with our previous
alculations including only the strong coupling mode �11. The
nclusion of the additional coupling mode �12 has a minor effect
n the electronic population dynamics. This result confirms the
alidity of the original 2D model for the 1A2– S0 conical inter-
ection [11].

.2.3. Comparison of 2D and 3D WP dynamics
Although the 2D and 3D calculations predict a similar elec-

ronic population dynamics for the 1A2– S0 conical intersection,
he comparison of details of the WP dynamics can provide
dditional insight into the multi-mode dynamics at this conical
ntersection. For the sake of illustration, we analyze the evolu-
ion of the WP for the initial preparation in the (1,0) vibrational
tate in the 2D model and compare it with the WP dynamics for
he (1,0,0) initial preparation in the 3D model. The probability

ensities of the 2D WP are displayed as the absolute squares
f the projection of the nuclear WP on the diabatic 1A2 and S0
tates. For the 3D case, we define reduced probability densities
or two vibrational modes by integration of the absolute square
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ig. 3. Time-dependent diabatic (dashed lines) and adiabatic (full lines) popula
1 1 0) (c), (1 1 1) (d), (1 2 0) (e).

f the nuclear WP over the third vibrational mode. The snapshots
re taken at 20 fs after the preparation of the excited state.

Fig. 4(a and b) shows the probability densities as functions
f r and Q11 for the diabatic 1A2 and S0 states, respectively,
or the 2D model. The WP, which has been prepared in the
A2 state at t = 0 fs, has arrived at the conical intersection at
0 fs. The central part of the WP remains in the 1A2 state, while
he wing parts have preferentially been transferred to the S0
tate. Since the excitation of the coupling mode increases the

xtension of the WP along Q11, the WP for nc,1 > 0 tends to
ollow the adiabatic surfaces rather than the diabatic surfaces.
his explains the influence of the excitation of the coupling
ode on the electronic population dynamics, which is clearly

t
s
d
c

robabilities of the 1A2 and S0 states for the initial states (1 0 0) (a), (1 0 1) (b),

een in Fig. 3. When the WP is transferred to the diabatic S0
tate, a nodal line is created at Q11 = 0 by the 1A2– S0 conical
ntersection (see Fig. 4(b)). This reflects the fact that the diabatic
oupling operator is an odd function of the coupling coordinate.

Fig. 4(c and d) shows the corresponding probability densities
or the 3D model, as functions of r and Q11. For the WP in the
xcited state, there is no obvious difference between the 2D and
D results (Fig. 4(a and c)), except that the 3D calculation yields
somewhat broader distribution of the probability density along
he coupling coordinate. The snapshot of the WP in the ground
tate (Fig. 4(b and d)), on the other hand, reveals a remarkable
ifference between the 2D and 3D calculations. In the 3D cal-
ulation, the reduced probability density at Q11 = 0 is not zero.
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Fig. 4. Snapshots of the probability density as a function of the NH stretching mode and one of the coupling modes at 20 fs: (a) probability density as a function of
r and Q11 of the 1A2 state obtained for the 2D model; (b) probability density as a function of r and Q11 in the S0 state obtained for the 2D model; (c) probability
d mod
o the d
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f
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d
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d
Q

t

ensity as a function of r and Q11 in the diabatic 1A2 state obtained for the 3D
btained for the 3D model; (e) probability density as a function of r and Q12 in
f Q11 and Q12 in the diabatic S0 state obtained for the 3D model.

he inclusion of the weak coupling mode thus modifies the sym-
etry properties of the WP as a function of the strong coupling
ode.
In the adiabatic representation, the nonadiabatic coupling

ector, which induces the nonadiabatic transition, is parallel to
he direction of effective coupling mode displacement Qeff [26]
see Eq. (6)). In the diabatic representation, Qeff, which is a lin-
ar combination of all Qc, determines the population transfer
etween the two surfaces. This means that the projection of the
P on the effective coupling coordinate exhibits a node struc-
ure of the WP like in the 2D case. In the present example, Q11
s the strong coupling coordinate, while the coupling of Q12 is
ather weak. Qeff therefore is quite close to Q11, but the small
ontribution of Q12 leads to a deviation of the orientation of Qeff

3

s

el; (d) probability density as a function of r and Q11 for the diabatic S0 state
iabatic S0 state obtained for the 3D model; (f) probability density as a function

rom Q11. This explains the blurring of the nodal structure of the
robability density in Fig. 4(d). As a complementary result, we
how in Fig. 4(e) the probability density in the diabatic ground
tate as a function of r and Q12 (the weak coupling mode). The
ensity of Fig. 4(e) is totally different from that of Fig. 4(d) and
xhibits no node at all. Finally, Fig. 4(f) shows the probability
ensity in the diabatic ground state as a function of Q11 and
12. This figure exhibits the nodal line in the WP perpendicular

o the effective coupling mode.
.3. 1B1– S0 conical intersection

Since the coupling strength of �21 and �23 is negligible, it
uffices to consider the strong coupling mode �24 and the weak
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oupling mode �22, resulting in a 3D model for the 1B1– S0 con-
cal intersection. Since our previous 2D calculations [11] were
ased on a slightly different definition of the coupling mode, it
s not useful to compare the present 3D results with the earlier
D results. We have repeated the 2D calculations, including the
H stretching motion and the strong coupling mode �24.

.3.1. Vibrational eigenstates of the electronic ground-state
urface
The lowest vibrational levels of the 3D electronic ground-
tate surface of the 1B2– S0 conical intersection model have
een calculated in the same way as for the 1A2– S0 model.
gain, nr, nc,1 and nc,2 denote the occupation numbers of the NH

s
m
w
m

ig. 5. Diabatic (dashed lines) and adiabatic (full lines) population probabilities of th
d), (0 2 0) (e).
obiology A: Chemistry 190 (2007) 177–189

tretching mode, the strongest coupling mode (�24) and the weak
oupling mode (�22), respectively. The fundamental frequencies
f these three vibrational motions are 3616, 471 and 623 cm−1,
espectively, in the 3D model, in acceptable agreement with the
xperimental and full-dimensional harmonic values (see [31,32]
nd references therein).

.3.2. Electronic population and WP dynamics
The decay rate of the population of the 1��∗ state is again
trongly dependent on the initial excitation of the NH stretching
ode. Other than in the 1A2– S0 case, we observe two processes
ith distinctly different time-scales when the NH stretching
ode is prepared in its ground state [(0, nc,1, nc,2) initial con-

e 1B1 and S0 states for the initial states (0 0 0) (a), (0 0 1) (b), (0 1 0) (c), (0 1 1)
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ition]. Both the diabatic and adiabatic pictures indicate a rapid
opulation transfer from the excited state to the ground state
uring the early stage of the dynamics (about 15 fs), followed
y a slow and monotonic decay (see Fig. 5). This dynamics can
e understood as follows. The barrier in the NH-stretching PE
unction is lower in the 1B1(��∗) state than in the 1A2(��∗) state
see Fig. 1). The high-energy component of the WP in the 1B1
tate therefore can overcome the barrier and can reach the con-
cal intersection quickly, resulting in the fast initial decay. The

ow-energy part, on the other hand, can reach the conical inter-
ection only by quantum tunnelling, resulting in the subsequent
low decay. When the NH stretching mode is initially excited,
hat is for the (1, nc,1, nc,2) (Fig. 6) and (2, nc,1, nc,2) (not shown

L
p
p
a

ig. 6. Diabatic (dashed lines) and adiabatic (full lines) population probabilities of th
d), (1 2 0) (e).
obiology A: Chemistry 190 (2007) 177–189 185

ere) initial conditions, the WP reaches the conical intersection
ithin 15 fs and the population transfer is essentially completed

fter 25 fs. In these cases, the initial WP has sufficient energy to
vercome the barrier, reach the conical intersection and move
owards to the two dissociation limits directly.

Figs. 5 and 6 show the electronic dynamics of the 3D 1B1– S0
onical-intersection model for various initial conditions. The ini-
ial vibrational state of the strong coupling mode (�24) has a large
ffect on the branching ration of the reaction (see Figs. 5 and 6).

et us consider the (1, nc,1,0) initial condition as a typical exam-
le. The excitation of the strong coupling mode enhances the
robability of the adiabatic pathway from 30% for nc,1 = 0 to
lmost 50% for nc,1 = 1. The branching ratio saturates at about

e 1B1 and S0 states for the initial states (1 0 0) (a), (1 0 1) (b), (1 1 0) (c), (1 1 1)
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0% for nc,1 = 2. The excitation of the weak coupling mode,
n the other hand, has a rather small effect on the population
ynamics. The probability of the adiabatic channel increases by
bout 5% for the excitation of one quantum of �22.

As a result of the weak effect of �22 on the nonadiabatic
ransition at the conical intersection, the calculations based on
he 2D, 3D and effective-mode models provide rather similar
opulation dynamics. These results can can be analyzed in the
ame manner as discussed above by considering the orientation
f Qeff. Therefore, we do not repeat the detailed discussion of
he probability densities here.

. Conclusions

In order to understand the effect of additional vibrational
odes on the 1��∗ driven photochemistry of pyrrole, we have

nvestigated the nonadiabatic dynamics of the 1B1– S0 and
A2– S0 coupled electronic states. For both of these conical
ntersections, we have determined the coupling strengths of all
ymmetry-allowed coupling modes. We have constructed 3D
odels which include the reaction coordinate (the NH stretch-

ng motion), one strong coupling mode, as well as one weak
oupling mode.

The adiabatic PE surfaces have been computed with the
ASSCF method. The ultrafast dynamics of the 3D conical-

ntersection models has been investigated using standard
ime-dependent quantum WP propagation methods. We have
nvestigated the effects of the preparation of different initial
ibrational states on the nonadiabatic dynamics.

The timescale of the photochemistry of pyrrole is extremely
ensitive to the preparation of the initial state of the NH stretch-
ng mode. The excitation of the NH stretching mode strongly
nhances the rate of decay of the excited electronic state. This
cceleration of the nonradiative decay rate saturates at nr = 1.

The 3D calculations reveal that for both conical intersec-
ions the nonadiabatic dynamics is governed by the strongest
oupling mode to a good approximation. Although the weak
oupling mode leads to interesting changes of the nodal pattern
f the WP at the conical intersection, it has little effect on the
lectronic population dynamics. This confirms that the previ-
usly developed two-mode models of the 1A2– S0 and 1B1– S0
onical intersections are quite useful for the qualitative under-
tanding of the mechanisms of the photoinduced dynamics of
yrrole. Both of the 2D and 3D models predict that the excita-
ion of the strong coupling mode has a pronounced effect on the
ranching ratio of the photodissociation products. It should be
herefore be possible to control the photodissociation dynamics
f pyrrole via the combination of IR and UV excitations, as has
een demonstrated for ammonia recently [33,34].

The extension of the theoretical description of the photodis-
ociation dynamics of pyrrole should include the 1B2 (��∗)
nd 1A1 (��∗) states, which are primarily populated when pyr-
ole is excited with wavelengths shorter than 220 nm. A more

omprehensive description of the photodissociation process thus
nvolves five electronic states [S0, 1A2 (��∗), 1B1 (��∗), 1B2
��∗), and 1A1 (��∗)] and several types of conical intersec-
ions, ��∗– ��∗ [12], ��∗– S0 [10,11], as well as ��∗– S0 [35].

t
a
f

obiology A: Chemistry 190 (2007) 177–189

lthough each of these conical intersections has been charac-
erized individually, a comprehensive picture of the dynamics
f the photodissociation process has yet to be developed. It is
nown, for example, that the 2A2 and 2B1 electronic states of
he pyrrolyl radical are strongly coupled through a conical inter-
ection [24,25] involving in-plane modes of B2 symmetry. The
hotodissociation via the upper (1B1) ��∗ state of pyrrole thus
ccurs in competition with the 2B1– 2A2 radiationless decay
rocess in the pyrrolyl fragment.

In the present few-dimensional models of pyrrole, the quan-
um yield for photodissociation is unity, since the large excess
nergy of the NH stretching mode cannot be absorbed by the
ther degrees of freedom. In a full-dimensional description, the
ystem can be stabilized by rapid intramolecular energy transfer
rom the active modes of the 1��∗– S0 conical intersections to
he remaining normal modes, resulting in internal conversion
o the electronic ground state in competition with photodisso-
iation. The quantum dynamical treatment of these processes
epresents a challenge for future theoretical work.
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ppendix A. The diabatic models

In this appendix, we describe the extension of the previously
eveloped 2D models (NH stretching coordinate and one cou-
ling mode) by including all symmetry-allowed coupling modes
three for the 1A2– S0 conical intersection and four for the 1B1–
0 conical intersection).

In the multi-mode models for the 1A2– S0 and 1B1– S0 conical
ntersections, the diabatic S0 PE surface is modelled by a Morse
unction for the tuning coordinate rNH and harmonic functions
f the coupling coordinates Qc

11 = v11(rNH) +
∑

c

1

2
ω(1)

c (rNH)Q2
c, (A.1)

ith

11(rNH) = D1
e[1 − exp(−a1(rNH − r1))]2, (A.2)

here r1 corresponds to the equilibrium NH distance of the
iabatic S0 state and D1

e is the dissociation energy.

The PE functions of the 1��∗ states display a barrier along

he NH stretch coordinate. To describe this barrier, we employ
n avoided-crossing model, combining a Morse potential (v21,
or the bound part) and a repulsive exponential potential (v22, for
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Table A.2
Values of the parameters pertaining to the coupling modes for the 1A2– S0 model

ω λ

Q10

ωc = 0.1022 eV λmax
12 = 0.066 eV

ω
(1)
c = 0.1077 eV d12 = 4.364 au

ω
(2)
c = 0.1155 eV β12 = 1.478 au

λ0 = 0 au

Q11

ωc = 0.0825 eV λmax
12 = 0.237 eV

ω
(1)
c = 0.1096 eV d12 = 3.679 au

ω
(2)
c = 0.1096 eV β12 = 1.369 au

λ0 = 0 au

Q12

ωc = 0.0756 eV λmax
12 = 0.151 eV

ω
(1)
c = 0.0887 eV d12 = 2.643 au

ω
(2)
c = 0.0487 eV β12 = 0.980 au

λ0 = 0.021767 au

Table A.3
Values of the parameters for v11, v21 and v22 for the 1B1– S0 model

V11 V22

v11 v21 v22

D1
e = 5.117 eV E2

0 = 5.584 eV A22 = 0.091 eV
r1 = 1.959 au D21

e = 8.070 eV D22
e = 4.092 eV

a1 = 1.196 au r21 = 1.922 au r22 = 5.203 au

p
s
T
Q

o
f
d
d
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he dissociation region). The diabatic potential functions of the
oupling modes are modelled by harmonic oscillator functions.
his results in the expression:

V22(rNH, Qc) = 1

2
(v21(rNH) + v22(rNH))

−1

2

√
[v21(rNH) − v22(rNH)]2 + 4λ2

22 +
∑

c

1

2
ω(2)

c (rNH)Q2
c,

(A.3)

here

21(rNH) = D21
e [1 − exp(−a21(rNH − r21))]2 + E2

0, (A.4)

22(rNH) = A22 exp(−a22(rNH − r22)) + D22
e , (A.5)

nd D22
e corresponds to the dissociation energy of the diabatic

��∗ state.
The coupling element in the diabatic representation is approx-

mately by a linear function:

12 =
∑

c

λc(rNH)Qc. (A.6)

The detailed procedure of obtaining the parameters in the
bove equations via the fitting of adiabatic ab initio data has been
escribed in the previous papers [10,11]. Here we just outline
he basic idea. First, we put all Qc = 0 in this model and obtain
he parameters related to v11, v21 and v22 by a non-linear fitting
sing the ab initio data of the 1D cut of the PE functions along
NH. One-dimensional adiabatic PE curves are calculated for
ach of the coupling modes for different NH distances. This
ields ω(1)

c , ω(2)
c and λc as functions of rNH. Finally, we have

hosen appropriate analytic functions to fit the rNH dependence
f these parameters.

For the 1A2– S0 conical intersection, Q11 is the strongest
oupling mode, while Q10 and Q12 are weak coupling modes.
t is found that the diabatic frequencies for all these modes do
ot depend on rNH.

We choose the following expression for the dependence of
he diabatic coupling strength λc on rNH:

c(rNH) = 1

2
λmax

12

[
1 − tanh

(
rNH − d12

β12

)]
+ λ0. (A.7)
Tables A.1 and A.2 give the values of the parameters of the
iabatic model defined by Eqs. (A.1)–(A.7). The average devia-
ion between the fit and the ab initio data is 0.01 eV, reaching a

aximum of 0.05 eV in the region of the barrier in the 1��∗state.

able A.1
alues of the parameters for v11, v21 and v22 for the 1A2– S0 model

11 V22

11 v21 v22

1
e = 4.979 eV E2

0 = 4.805 eV A22 = 2.644 eV

1 = 1.927 au D21
e = 4.979 eV D22

e = 3.956 eV

1 = 1.137 au r21 = 1.882 au r22 = 2.216 au
a21 = 1.293 au a22 = 1.325 au

λ22 = 1.248 eV

ω

1

�
t
d

A

|

a21 = 0.822 au a22 = 1.290 au
λ22 = 1.669 eV

For the 1B1– S0 conical intersection, Q24 is the strong cou-
ling mode and Q22 also couples these two states with medium
trength, while the coupling by Q21 and Q23 is close to zero.
hus it is reasonable to neglect Q21 and Q23 in this model. For
22 and Q24, the dependence of the diabatic coupling strength

n rNH is described by Eq. (A.7). It is found that the diabatic
requencies ω(1)

c and ω(2)
c do not depend on rNH for Q22. The

iabatic frequencies ω(1)
c and ω(2)

c of Q24, on the other hand,
ecrease with increasing NH coordinate. We have used the fol-
owing function to represent the diabatic frequencies of Q24 as
unctions of rNH:

(i)
c (rNH) = 1

2
ai

[
1 − tanh

(
rNH − b1

ci

)]
+ di. (A.8)

Tables A.3 and A.4 give the values of all parameters of the
B1– S0 model. Due to the very small contribution of �21 and
23 to the diabatic coupling element, they are not included in the
ables. The average deviation between the fit and the ab initio
ata is 0.015 eV.

ppendix B. Preparations of the initial states
In the MGBR approach, the 3D WP is expressed as

	(t)〉 =
∫

dr
∑
i,m,n

χi,m,n(r, t)〈r|〈n|〈m|〈φe
i |	(t)〉. (B.1)



188 Z. Lan et al. / Journal of Photochemistry and Phot

Table A.4
Values of the parameters pertaining to the coupling modes for the 1B1– S0 model

ω λ

Q22

ωc ωc = 0.0888 eV λmax
12 = 0.0738 eV

ω
(1)
c ω

(1)
c = 0.0650 eV d12 = 4.0728 au

ω
(2)
c ω

(2)
c = 0.1260 eV β12 = 0.0910 au

λ0 = 0.0 au

Q24

ωc ωc = 0.0640 eV λmax
12 = 0.4269 eV

ω
(1)
c a1 = 0.0718 eV d12 = 4.8319 au

b1 = 2.5805 au β12 = 1.3225 au
c1 = 1.4619 au λ0 = 0.0 au
d1 = 0.0753 au

ω
(2)
c a2 = 0.0718 eV

b2 = 2.5805 au

H
t
o
w
c
s
o
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g
g
g

H

A
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r
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〈
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t
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|
T
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(
t
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t
[
t
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s
s [〈 〉]∣
c2 = 1.4619 au
d2 = 0.0143 au

ere, the WP is given in the coordinate-space representation for
he NH stretching coordinate r. For the coupling modes, on the
ther hand, the WP is expressed in basis functions, |n〉 and |m〉,
hich represent sets of harmonic oscillator functions for the two

oupling modes. The |φe
i 〉 are diabatic or adiabatic electronic

tates. In this representation, the time-dependent nuclear WP
n the ith diabatic or adiabatic electronic state as χd

i,m,n(r, t) or
a
i,m,n(r, t), respectively.

To define the initial preparation of the system, we first
enerate the vibrational eigenstates of the adiabatic electronic
round-state PE surface V a

1 . The Hamiltonian for the electronic
round state is

ground = T + V a
1 = h̄2

2μ

∂2

∂r2 −
∑

c

1

2
ωc

∂2

∂Q2
c

+ V a
1 (r, Qc, . . .).

(B.2)

fter the separation of the Hamiltonian into three parts,

Hground = H1 + H2 + H3, H1 = − h̄2

2μ

∂2

∂r2 ,

H2 =
∑

c

1

2
ωc

(
− ∂2

∂Q2
c

+ Q2
c

)
,

H3 = V a
1 (r, Qc, . . .) −

∑
c

1

2
ωcQ

2
c . (B.3)

t is straightforward to represent each of them with the help
f the discrete variable representation (DVR) and finite variable
epresentation (FBR). The kinetic operator H1 of the r part is rep-
esented by the Colbert-Miller DVR [36], which is essentially the
ourier basis. The matrix element of H2 can be evaluated directly
ith harmonic-oscillator basis functions. The residual Hamilto-
ian H3 only depends on the coordinates. Its matrix elements

lso be evaluated efficiently with the FBR/DVR method.

The concept of the FBR/DVR method has been discussed
y many authors (see Ref. [37] for a review). Here, we adopt a
ather simple approach as follows [38]. In the coordinate space,

F

obiology A: Chemistry 190 (2007) 177–189

he DVR grid points for the coupling modes are calculated
y diagonalization of the coordinate operator Q̂ in the given
armonic-oscillator basis set

n1|Q̂c|n2〉 =
∑
Qc

〈n1|Qc〉Qc〈Qc|n2〉. (B.4)

he set of eigenvalues Qc of Q̂c provides the local grid points
nd the corresponding eigenvectors 〈Qc|ni〉 define the transfor-
ation matrix between basis and grid. Labelling two coupling
odes as Qc,1 and Qc,2, matrix elements of H3 can be evaluated

s:

〈r1, n1, m1|H3|r2, n2, m2〉
=

∑
Qc,1,Qc,2

〈n1|Qc,1〉〈m1|Qc,2〉H3(r1, Qc,1, Qc,2)〈Qc,1|n2〉

× 〈Qc,2|m2〉δr1,r2 . (B.5)

For the r coordinate, we have employed 64 DVR points from
.0 to 6.2 au. We have used 10 harmonic-oscillator basis func-
ions to represent the Hamiltonian for the two coupling modes.

For the kth vibrational state χ
(a)
1,k of the adiabatic ground elec-

ronic state |φ(a)
1 〉, the total wavefunction 	0 in the adiabatic

epresentation can be written as

	0〉 = χ
(a)
1,k|φ(a)

1 〉. (B.6)

he initial WP is prepared by vertical excitation of |	0〉 to
he adiabatic excited state |φ(a)

2 〉. Employing the unitary trans-
ormation matrix U of Eq. (1), we obtain the initial nuclear

P χ(d) (t = 0) in the diabatic representation for the propaga-
ion. Because the WPs are expressed in the MGBR and the
ransformation matrix U depends on the nuclear coordinates
r, Qc,1, Qc,2), The FBR/DVR technique is employed to perform
his adiabatic-to-diabatic transformation.

ppendix C. Details of the WP propagation

The WPs are propagated in the MGBR (see Appendix B) on
he two coupled surfaces using the split-operator (SO) method
39]. We employ the fast Fourier transform (FFT) method [40]
o evaluate the kinetic-energy operator of the r coordinate. We
se the same grid spacing here and extend our grid to 256 points,
rom 3.0 to 15.8 au. Ten harmonic-oscillator basis functions are
mployed for each of the coupling modes. The wave packets are
ropagated for 200 fs for the 1B1– S0 and 1A2– S0 conical inter-
ections, respectively, with a time step of 0.1 fs. All calculations
ave been checked to guarantee converged results with respect
o grid size and time step.

The dissociation probability on the ith diabatic electronic
tate is defined as the time-accumulated flux through a dividing
urface located at r = rflux in the asymptotic region [21,41]
D
i (t) = h̄

μ

∫ t

t=0
Im χ

(d)
i,m,n(r, t)|∂χ

(d)
i,m,n(r, t)

∂r

∣∣∣∣
r=rflux

dt.

(C.1)
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To avoid reflection at the grid boundary in the r direction, we
pply a damping function [41],

(r) = sin

[
π

2

(rmask + �rmask − r)

�rmask

]
, rmask < r < rmax

(C.2)

etween rmask = 13.5 au and rmax = 15.8 au to remove the dis-
ociative WP.

The diabatic electronic population probabilities are calcu-
ated as follows. Instead of using the large grid for the stretching
oordinate r, we put a surface at rD = 13.5 au in the asymptotic
egion of the potential surface to measure the dissociation flux.
hen we define the diabatic electronic population probability as

he sum of the probability of the nuclear WP in the region of
0, rD] and the flux penetrating the surface at rD:

d
i (t) =

∫ rD

0

∑
n,m

|χ(d)
i,m,n(r, t)|2 dr + FD

i (t). (C.3)

o determine the adiabatic populations, we use a similar tech-
ique:

a
i (t) =

∫ rD

0

∑
n,m

|χ(a)
i,m,n(r, t)|2 dr + FD

i (t). (C.4)

he transformation between χ
(a)
i,m,n(r, t) and χ

(d)
i,m,n(r, t) is again

valuated using FBR/DVR methods.
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